3. Hausübung, Statistische Physik

abzugeben am Donnerstag, 3.11.2011

Aufgabe H5 Equilibrium state from maximum entropy (6 Punkte)

a. Let A and B be complex matrices. Assuming that we treat a complex number and its conjugate as independent variables (i.e. $\frac{d}{dz}\overline{z} = 0$ and $\frac{d}{dz}z = 1$), show that

$$\frac{\partial}{\partial A_{ij}} \operatorname{tr} (AB) = B_{ji}.$$

b. Assuming $\det \rho \neq 0$, one can show that

$$\operatorname{tr}\left[\rho \frac{\partial \ln \rho}{\partial \rho_{ij}}\right] = \delta_{ij}$$

(You are *not* required to show this.) We want to find the state ρ which maximizes the von Neumann entropy $S(\rho) = -\text{tr} \left[\rho \ln \rho\right]$ with the constraint that the expectation value of the energy be $\text{tr} \left(\rho H\right) = U$. Using the method of the Lagrange multipliers, with the constraints $\text{tr} \rho = 1$ and $\text{tr} \left(\rho H\right) = U$, show that the entropy is at a local optimum for the quantum state

$$\rho = \frac{e^{-\beta H}}{\text{tr } e^{-\beta H}} \tag{1}$$

where $\beta \in \mathbb{R}$ is one of the Lagrange multipliers. Give its *implicit* dependence on U (i.e., write the equation relating β to U, without solving for β .)

c. If a system with Hamiltonian H is at thermal equilibrium with a sufficiently large reservoir at temperature τ , then its state is precisely given by the above density matrix with

$$\beta = \frac{1}{\tau}$$
.

The partition function therefore is $Z = \operatorname{tr} e^{-\beta H}$, and the free energy is

$$F = -\tau \ln Z$$
.

Show that

$$\frac{d}{d\tau}F = -S$$

where S is the von Neumann entropy of the state expressed in Equation 1. Hint: compute both sides independently and compare.

Aufgabe H6 Rotation of diatomic molecule (6 Punkte)

Molecules can rotate, which involves kinetic energy. The rotational motion is quantized, and the kinetic energy eigenvalues for a diatomic molecule are of the form

$$\epsilon(j) = j(j+1)\epsilon_0.$$

where $j=0,1,2,\ldots$ and $\epsilon_0=\frac{\hbar^2}{2I}$, where I is the moment of inertia. The multiplicity of eigenvalue j is

$$g(j) = 2j + 1.$$

- a. Write down the partition function $Z(\tau)$.
- b. Evaluate $Z(\tau)$ approximately for $\tau \gg \epsilon_0$ by converting the sum to an integral.
- c. Do the same for $\tau \ll \epsilon_0$ by truncating the sum after the second term.
- d. Give expressions for the energy U and the heat capacity C as functions of τ in both limits. Observe that the rotational contribution to the heat capacity of a diatomic molecule approaches 1 when $\tau \gg \epsilon_0$.